Ò¼ºÅÓéÀÖAPP

¹ØÓÚ¾ÙÐС°Geometric characterizations of freely quasiconformal mappings in real Banach spaces¡±µÈѧÊõ±¨¸æµÄ֪ͨ

Ðû²¼Ê±¼ä£º 2024-12-30

±¨¸æÎÊÌâÒ»£ºGeometric characterizations of freely quasiconformal mappings in real Banach spaces

ͻ񻣼We establish a characterization of freely quasiconformal mappings in real Banach spaces. This characterization is in terms of the geometric moduli of rings which was introduced by Tukia-Vaisala in 2021. As an application, we obtain a generalization of geometric characterizations of quasiconformal mappings in R^n.

±¨¸æÊ±¼ä£º2025Äê1ÔÂ4ÈÕÉÏÎç10:00¡ª11:00

±¨¸æËùÔÚ£º±±Ö÷Â¥1204

±¨¸æÈ˼ò½é£ºÍõÏÉÌÒ£¬½ÌÊÚ¡¢¡¢¡¢²©Ê¿Éúµ¼Ê¦¡£¡£¡£±¾¿Æ½áÒµÓÚºþÄÏʦ·¶´óѧ£»Ë¶Ê¿¡¢¡¢¡¢²©Ê¿½áÒµÓÚºþÄÏ´óѧ£¬1999ÄêÈκþÄÏ´óѧ½ÌÊÚ£¬2012ÄêÈκþÄÏÊ¡Ê×Åú¶þ¼¶½ÌÊÚ£¬½ÌÓý²¿ÐÂÊÀ¼ÍÓÅÒìÈ˲Å£¬ºþÄÏʡѧ¿Æ´ø¶¯ÈË¡£¡£¡£ºþÄÏʦ·¶´óѧµÄºþÄÏʡʮ¶þÎåÖØµãѧ¿ÆÊýѧ¡¢¡¢¡¢ÖÐÑëרÏîÍýÏëÏîÄ¿Êýѧ¡¢¡¢¡¢ºþÄÏÊ¡Ê×½ìͨË׸ßУ¿£¿£¿Æ¼¼Á¢ÒìÍŶÓ¡¢¡¢¡¢ºþÄÏʡͨË׸ßУ½ÌѧÍŶӵÄÖ÷³ÖÈË¡£¡£¡£ÔøÈκþÄÏʦ·¶´óѧÊýѧÓëÅÌËã»úѧԺµÄ¸±Ôº³¤¡£¡£¡£Ñо¿ÁìÓòΪKleinȺÓëÄâ¹²ÐÎÓ³Éä¡¢¡¢¡¢Ð­µ÷Ó³Éä¡£¡£¡£Ö÷³ÖÍê³É¶àÏî¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð£»½â¾öÁ˽ÒÏþÔÚ¹ú¼ÊÊýѧ×îȨÍþ¿¯Îï¡¶Acta.Math.¡·ÉÏÐü¶øÎ´¾ö´ïÈýÊ®¶àÄêµÄÎÊÌ⣬ÔÚÊ®¼¸¸ö¹ú¼ÒµÄÊýѧȨÍþ¿¯Îï½ÒÏþÂÛÎÄ80¶àƪ£»Êǵ¹ú¡¶ÊýѧÎÄÕª¡·Ì¸ÂÛÔ±£»¶à´ÎÓ¦Ñûµ½·ÒÀ¼¡¢¡¢¡¢Ó¡¶È¡¢¡¢¡¢ÈÕ±¾µÈ¹ú½²Ñ§ÓëÏàÖúÑо¿¡£¡£¡£2000Ä꣬ËûÂÊÏÈÔÚº£ÄÚ¸ßУ¿£¿£¿ªÕ¹±¾¿ÆÊýѧÆÊÎö¿Î³ÌµÄË«Óï½Ìѧ£¬ËûÊǹú¼Ò¼¶Ë«Óï½ÌѧÊ÷Ä£¿Î³ÌµÄÖ÷³ÖÈË¡£¡£¡£


±¨¸æÎÊÌâ¶þ£ºGeodesics in Gromov hyperbolic domains

ÕªÒª£ºIn this talk, we consider the questions proposed by Heinonen and Rohde (Math. Proc. Cambridge Philos.Soc., 1994) and  Heinonen  (Rev. Math. Iber., 1989) , and we give some sufficient conditions for quasi-geodesic, which gives an  answer to an open problem proposed by Heinonen and Rohde in 1994.

±¨¸æÊ±¼ä£º2025Äê1ÔÂ4ÈÕÉÏÎç11:00¡ª12:00

±¨¸æËùÔÚ£º±±Ö÷Â¥1204

±¨¸æÈ˼ò½é£º»ÆÂü×Ó£¬½ÌÊÚ£¬²©Ê¿Éúµ¼Ê¦£¬»ù´¡Êýѧ£¬µ¥¸´±äº¯ÊýÂÛ£¬Ñо¿ÁìÓò£ºÄâ¹²ÐÎÓ³ÉäºÍ¼¸ºÎº¯ÊýÂÛ¡£¡£¡£Ö÷³ÖËÄÏî¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð¡¢¡¢¡¢Ò»ÏîÊ¡½ÌÓýÌüÓÅÒìÇàÄê»ù½ð£»2017»ñºþÄÏÊ¡ÓÅÒìÇàÄê»ù½ð£»2019Äê»ñ¹ú¼ÒÓÅÒìÇàÄê»ù½ð¡£¡£¡£½üÄêÀ´£¬Ö÷ÒªÕë¶Ô¸´ÆÊÎöÖеÄÄâ¹²ÐÎÓ³ÉäÁìÓòÄÚ±»¸÷ÈËËù¹Ø×¢µÄһЩ¹«¿ªÎÊÌâ¾ÙÐÐÑо¿£¬Òѽâ¾öÄâ¹²ÐÎÓ³ÉäÊ×´´ÈËVaisalaµÄÏà¹Ø¹«¿ªÎÊÌâºÍÍÆ²â7¸ö£¬²¿·ÖÑо¿ÊµÏÖÁËÓÐÏÞά¿Õ¼äµ½ÎÞÏÞά¿Õ¼äµÄÍ»ÆÆ¡£¡£¡£ÔÚ¡¶Adv.Math.¡·¡¶Math.Ann.¡·¡¶Israel.J.Math.¡·¡¶Ann. Acad. Fenn.Math.¡·¡¶Math.Scand.¡·ºÍ¡¶Science in China¡·µÈSCI¿¯Îï½ÒÏþÂÛÎÄ20¶àƪ¡£¡£¡£ºþÄÏÊ¡ÇàÄêÖ÷¸ÉÎ÷ϯ£¬Ò»Ö±µ£µ±±¾¿ÆÉúµÄ¸´±äº¯Êý¡¢¡¢¡¢¸ßµÈÊýѧµÈ½Ìѧ¡£¡£¡£


½Ó´ý¸ÐÐËȤµÄÏÈÉúºÍѧÉú¼ÓÈ룡£¡



Ò¼ºÅÓéÀÖAPP¿Æ¼¼´¦

ÊýѧÓëÅÌËã¿ÆÑ§Ñ§Ôº

2024Äê12ÔÂ30ÈÕ



¡¾ÍøÕ¾µØÍ¼¡¿