Ò¼ºÅÓéÀÖAPP

Ò¼ºÅÓéÀÖAPP40ÖÜÄêУÇìÊýѧÓëÅÌËã¿ÆÑ§Ñ§ÔºÏµÁÐѧÊõ±¨¸æ£ºGeometric characterizations of freely quasiconformal mappings in real Banach spaces

Ðû²¼Ê±¼ä£º 2025-03-12

±¨¸æÎÊÌ⣺Geometric characterizations of freely quasiconformal mappings in real Banach  spaces

ͻ񻣼This talk focuses on four classical topics in geometric function theory in one complex variable. These topics include the Biberbach conjecture (i.e., de Branges Theorem), the generalized Zalcman conjecture, the Fekete and Szego inequality, and the successive coefficients difference bounds. The paper discusses sharp results obtained for biholomorphic starlike mappings in several complex variables under specific restriction conditions. It is demonstrated that relatively weaker versions of the Biberbach conjecture, the generalized Zalcman conjecture, the Fekete and Szego inequality, and the successive homogeneous expansions difference bounds (or the Goluzin problem) for biholomorphic starlike mappings in several complex variables are proven, with most of them being reduced to the related results in one complex variable.

±¨¸æÊ±¼ä£º2025ÄꣳÔ£±4ÈÕ£±£¶:00¡ª£±£·:00

±¨¸æËùÔÚ£º±±Ö÷Â¥1204

±¨¸æÈ˼ò½é£ºÁõСËÉ£¬£¬£¬ÁëÄÏʦ·¶Ñ§ÔºÈý¼¶½ÌÊÚ£¬£¬£¬ÃöÄÏʦ·¶´óѧ¼æÖ°Ë¶µ¼£¬£¬£¬1991Äê±¾¿Æ½áÒµÓÚ¼ªÊ×´óѧ£¬£¬£¬1994Äê˶ʿ½áÒµÓÚ¹ãÎ÷´óѧ£¬£¬£¬2005Äê»ñÖйú¿ÆÑ§ÊÖÒÕ´óѧ²©Ê¿Ñ§Î»¡£¡£¡£ÔøÈÎÁëÄÏʦ·¶Ñ§ÔºÊýѧÓëͳ¼ÆÑ§ÔºµÄ¸±Ôº³¤¡£¡£¡£Ö÷ÒªÑо¿ÐËȤÊǶิ±äÊýBieberbachÒâÁÏ¡¢¶à¸´±äÊýÐÇÐÎÓ³ÉäÎó²î¶¨Àí¡¢¶à¸´±äÊýBohr²»µÈʽ¡¢¶à¸´±äÊýÍÆ¹ãµÄZalcmanÒâÁϼ°¶à¸´±äÊýÍÆ¹ãµÄFekete-Szego²»µÈʽµÈ¡£¡£¡£ÔÚ¡¶Sci.China.Math.¡·¡¶J.Math.Anal.Appl.¡·µÈÒ»¼¶¿¯ÎïÒÔÉÏÆÚ¿¯½ÒÏþµÚÒ»×÷ÕßÂÛÎÄÔ¼40ƪ£¬£¬£¬ÆäÖУ¬£¬£¬SCIÊÕ¼Լ30ƪ¡£¡£¡£ÏÖÖ÷³ÖÍê³É¹ú¼Ò×Ô¿Æ»ù½ðÃæÉÏÏîÄ¿1Ï£¬£¬¼ÓÈë¹ú¼Ò×Ô¿Æ»ù½ðÃæÉÏÏîÄ¿3Ï£¬£¬µØÇøÏîÄ¿1Ï£¬£¬Ö÷³ÖÍê³ÉÊ¡×Ô¿Æ»ù½ð2Ïî¡£¡£¡£»£»£»ñÁëÄÏʦ·¶Ñ§Ôº½ÌѧÃûʦµÈÉùÓþ³Æºô£¬£¬£¬ÏÖΪ¹ã¶«Ê¡¸ßУÊýѧ½Ìѧָµ¼Î¯Ô±»áίԱ¡£¡£¡£

½Ó´ý¸ÐÐËȤµÄÏÈÉúºÍѧÉú¼ÓÈ룡£¡




Ò¼ºÅÓéÀÖAPP¿Æ¼¼´¦

ÊýѧÓëÅÌËã¿ÆÑ§Ñ§Ôº

202£µÄꣳÔ£±£²ÈÕ



¡¾ÍøÕ¾µØÍ¼¡¿