¡¾»ù±¾ÇéÐΡ¿
Ðì¿¡·å£¬£¬£¬½ÌÊÚ¡¢Ë¶Ê¿Éúµ¼Ê¦¡¢Ôº³¤¡£¡£2008Äê6ÔÂÓÚɽ¶«´óѧ»ñµÃ²©Ê¿Ñ§Î»¡£¡£2009Äê12ÔÂÌáÉýΪ¸±½ÌÊÚ£¬£¬£¬2013Äê12ÔÂÌáÉýΪ½ÌÊÚ¡£¡£2013Äê¶È¹ã¶«Ê¡¸ßУÓÅÒìÇàÄê×÷Óý¹¤¾ß£¬£¬£¬¹ã¶«Ê¡¸ßУµÚÁùÅú"ǧ°ÙÊ®¹¤³Ì"У¼¶×÷Óý¹¤¾ß¡£¡£2009Äê¶È½ÃÅÊС°ÇàÄê¿Æ¼¼¼â±ø¡±¡£¡£Ö÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÒ»Ï£¬£¬¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðËÄÏ£¬£¬¹ã¶«Ê¡½ÌÓýÌü¿ÆÑÐÏîÄ¿ÈýÏ¹ú¼ÒÒ»Á÷±¾¿Æ×¨Òµ½¨ÉèµãÈÏÕæÈË£¬£¬£¬Ê¡¼¶¿Î³Ì˼ÕþÊ÷Ä£½ÌѧÍŶÓ--´óѧ¹«¹²Êýѧ½ÌѧÍŶÓÈÏÕæÈË£¬£¬£¬Ê¡¼¶¸´±äº¯Êý½ÌѧÍŶÓÈÏÕæÈË¡£¡£¼ÓÈë¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿¼°¹ú¼ÊÏàÖú¿ÆÑÐÏîÄ¿¡¢½ÌÓý²¿²©Ê¿µã»ù½ð¼°¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ð10¶àÏî¡£¡£ÃÀ¹úÊýѧ»á¡¶Mathematical Reviews¡·Ì¸ÂÛÔ±¡¢¹ã¶«Ê¡¹¤ÒµÊýѧ»áÀíÊ¡¢¹ã¶«Ê¡ÏÖ³¡Í³¼ÆÑ§»á³£ÎñÀíÊ¡£¡£
ÌìÏ´óѧÉúÊýѧ½¨Ä£¾ºÈü¹ã¶«Ê¡ÈüÇøÓÅÒìÖ¸µ¼Î÷ϯ£¬£¬£¬Ö¸µ¼Ñ§Éú»ñÌìÏ´óѧÉúÊýѧ½¨Ä£½ÇÖð¹ú¼Ò¡¢Ê¡¼¶½±10¶àÏָµ¼Ñ§Éú»ñ¡°Ìï¼Ò±þ¡±Ê¦·¶ÊÖÒÕ½ÇÖðÌìÏÂÈýµÈ½±£»Ö¸µ¼Ñ§Éú»ñ¡°ÌôÕ½±¡±¹ã¶«Ê¡Ò»µÈ½±µÈ¡£¡£
¡¾ÁªÏµ·½Ê½¡¿
ÁªÏµ·½Ê½£º£ºxujunf@gmail.com
¡¾Ö÷½²¿Î³Ì¡¿
±¾¿ÆÉú¡¶ÊýѧÆÊÎö¡·¡¶¸ßµÈÊýѧ¡·¡¶ÏßÐÔ´úÊý¡·¡¶¸´±äº¯Êý¡·¡¶Êµ±äº¯Êý¡·ÒÔ¼°Ñо¿Éú¡¶¸´ÆÊÎöÑ¡½²¡·¡¶ÖµÂþÑÜÀíÂÛ¡·¡¶¸´Î¢·Ö·½³ÌÀíÂÛ¡·µÈ. Ö¸µ¼Ë¶Ê¿Ñо¿Éú10¶àÃû¡£¡£
¡¾Ö÷ÒªÑо¿Æ«Ïò¡¿
¸´ÆÊÎö¼°ÆäÓ¦Óã¨Complex analysis and its applications£©
¡¾½Ìѧ¡¢¿ÆÑÐÏîÄ¿¡¿£¨²¿·Ö£©
1.Ö÷³Ö¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿--¸´Óò΢·Ö-²î·Ö¼°º¯Êý·½³ÌµÄÑо¿£¨No. 2021A1515010062£© £¨2021Äê1ÔÂ-2023Äê12Ô£©£¨¾·Ñ10Íò£©
2.Ö÷³Ö¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿--¸´Óò΢·Ö¼°²î·Ö·½³ÌµÄÑо¿ÓëÓ¦Óà £¨No. 2018A0303130058£©£¨2018Äê5ÔÂ-2021Äê4Ô£©£¨¾·Ñ10Íò£©
3.Ö÷³Ö¹ã¶«Ê¡¸ßÐ£ÌØÉ«Á¢ÒìÏîÄ¿(No. 2016KTSCX145)£¨2017Äê1ÔÂ-2019Äê12Ô£©£¨¾·Ñ20Íò£©
4.Ö÷³Ö¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿£¨No. 2016A030313002£© £¨2021Äê1ÔÂ-2023Äê12Ô£©£¨2016Äê1ÔÂ-2018Äê12Ô£©£¨¾·Ñ10Íò£©
5.Ö÷³Ö¹ã¶«Ê¡¸ßУÓÅÒìÇàÄê×÷Óý¹¤¾ßÏîÄ¿(No.Yq2013159) (2014Äê1ÔÂ-2016Äê12ÔÂ)£¨¾·Ñ30Íò£©
6.Ö÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÊýѧÌìÔªÇàÄê»ù½ð(No.11126327)£¨201201-201212£©£¨¾·Ñ3Íò£©
7.Ö÷³Ö¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ð²©Ê¿Æô¶¯ÏîÄ¿(No.9452902001003278)£¨2009Äê10ÔÂ-2011Äê10Ô£©£¨¾·Ñ3Íò£©
8.Ö÷³Ö¹ã¶«Ê¡½ÌÓýÌü¸ßУÓÅÒìÇàÄêÈ˲ÅÅàÓýÏîÄ¿(No.LYM08097)¡£¡££¨2009Äê1ÔÂ-2010Äê12Ô£©£¨¾·Ñ4Íò£©
9.Ö÷³Ö¹ã¶«Ê¡½ÌÓýÌüÖÊÁ¿¹¤³ÌÏîÄ¿--¸´±äº¯Êý¿Î³Ì½ÌѧÍŶÓÏîÄ¿£¨2021Äê1ÔÂ-2023Äê12Ô£©£¨¾·Ñ10Íò£©
10.Ö÷³Ö¹ã¶«Ê¡¸ßУ¿Î³Ì˼ÕþÊ÷Ä£½ÌѧÍŶÓÏîÄ¿¡ª´óѧ¹«¹²Êýѧ¿Î³Ì˼Õþ½ÌѧÍŶÓ.£¨¾·Ñ5Íò£©
¡¾½ÒÏþѧÊõÂÛÎÄ¡¿£¨²¿·Ö£©
[1] Junfeng Xu and Shuichao Ye, A unified inequality of differential polynomials related to small functions, Italian Journal of Pure and Applied Mathematics, 47(2022),664-674. (EI)
[2] Junfeng Xu, Libao Luo, Some q-shift difference results on Hayman conjecture and uniqueness theorems, Bull. Iran. Math. Soc. 48 (2022), no. 3, 1193-1204. (SCI)
[3] Dong Cheng, Kit Ian Kou, Yonghui Xia & Junfeng Xu (2022): Sampling expansions associated with quaternion difference equations, Linear and Multilinear Algebra, DOI: 10.1080/03081087.2022.2094863
[4] Feng Lv, Chun He, Junfeng Xu, A Remark on the Meromorphic Solutions in the FitzHugh¨CNagumo Model, Bull. Malays. Math. Sci. Soc. (2021). 44(4), 2479-2488.(SCI)
[5] Feng Lv, Cuiping Li, Junfeng Xu, The Exact Entire Solutions of Certain Type of Nonlinear Difference Equations, J. Contemp. Math. Anal. 2021, 93(2):93-102. (SCI)
[6] Junfeng Xu, Jianxun Rong, Exponential polynomials and nonlinear differential-difference Equations, Journal of Function Spaces, 2020, (2020):1-10. (SCI)
[7] Feng Lv, Weiran, Lv, Cuiping Li, Junfeng Xu(ͨѶ×÷Õß), Growth and Uniqueness Related to Complex Differential and Difference Equations, Rusults in Math£¬£¬£¬2019, 74:30. (SCI)
[8] 2. Junfeng Xu, Shuichao Ye, On the Zeros of the Differential Polynomial ¦Õ(z)f2(z)f¡ä(z)2 ¨C 1, Mathematics, 2019, 7(1), 87. (SCI)
[9] 3. Jianxun Rong, Junfeng Xu(ͨѶ×÷Õß), Three Results on the nonlinear differential equations and differential-difference equations. Mathematics, 2019, 7(6):539. (SCI)
[10] 1. Ming-Sheng Liu,Yin-Miao Shang and Jun-Feng Xu, Bohr-type inequalities of analytic functions, Journal of Inequalities and Applications, (2018) 2018: 345. (SCI)
[11] 1.Feng Lu, Yanfeng Wang and JunfengXu(ͨѶ×÷Õß),, Entire functions sharing a small function with their two difference operators, Advances in Difference Equations£¬£¬£¬2017(2017):216. (SCI)
[12] X.B. Zhang, J. F. Xu, Value sharing of meromorphic functions of differential polynomials of finite order, Journal of Computational Analysis and Applications,Vol 20, No. 6. 2016, 1097-1106. (SCIE)
[13] J. F. Xu, FengLv£¬£¬£¬Uniqueness theorem of meromorphic functions and their k-th derivatives sharing set, Journal of Computational Analysis and Applications,Vol 21, No. 1. 2016, 90-100(SCIE)
[14] X.B. Zhang,Y. Han, J. F. Xu, Uniqueness theorems of solutions of Painleve transcendents, J. Contemp. Math. Anal., 2016, Vol. 51, No. 4, pp. 208-214. (SCIE)
[15] F. Lv, J. F. Xu(ͨѶ×÷Õß),, Two results on the normality criterion concerning holomorphic function, J. Contemp. Math. Anal., Vol 51, No. 1. 2016, 34-40.(SCIE)
[16] J.F.Xu, H.X. Yi, An inequality of differential polynomials related to small functions, J. Math Inequa. Vol 10, No.4. 2016, Vol 10, No.4. 2016, 971-976. SCIE
[17] C.P. Li, F.lv and J. F. Xu (ͨѶ×÷Õß), Entire solutions of nonlinear differential-difference equations, Springerplus, (2016)5:609 (SCI)
[18] F. Lv, J. F. Xu(ͨѶ×÷Õß),, H.X.Yi, A note on a famous theorem of Pang and Zalcman, Journal of Computational Analysis and Applications,Vol 18, No.4. 2015, pp. 662-669. (SCIE).
[19] X.B. Zhang, J. F. Xu, Further results on normal families of meromorphic functions concerning shared values, Journal of Computational Analysis and Applications,Vol 19, No. 2. 2015, pp. 310-318 (SCIE)
[20] M.S.Liu, Z.X. Liu, J. F. Xu, Landau-Type Theorems for Certain Biharmonic Mappings, Abstract and Applied Analysis, Volume 2014 (2014), Article ID 925947, 7 pages. (SCIE).
[21] M.S.Liu, J. F. Xu, M.Yang, Upper Bound of Second Hankel Determinant for Certain Subclasses of Analytic Functions, Abstract and Applied Analysis, Volume 2014 (2014), Article ID 603180, 12 pages. (SCIE).
[22] X.M. Zheng, H.Y. Xu and J.F. Xu, The fixed points of solutions of some q-difference equations, Abstract and Applied Analysis, Volume 2014 (2014), Article ID 262570, 6 pages.
[23] J. F. Xu , X. B. Zhang, A note on the shared set and normal family, Journal of Computational Analysis and Applications,Vol 15, No. 5. 2013,pp. 977-984 (SCIE).
[24] J. F. Xu, X. B. Zhang, Some results of meromorphic solutions of second-order linear differential equations, Journal of Inequalities and applications, Volume 2013 (2013), Article ID 304. (SCIE).
[25] J. F. Xu, Z.L. Zhang, Growth and fixed points of meromorphic solutions of nonhomogeneous linear differential equations£¬£¬£¬Advances in Difference Equations, 2013,2013:370(SCIE).
[26] F. Lv, J.F. Xu, Entire functions that share a function with their first and second derivatives, Ann. Polon. Math.Vol. 4, Issue. 2, 2012, pp. 63-70.(SCIE).
[27] J. F. Xu, X. B. Zhang, The zeros of difference polynomials of meromorphic functions, Abstract and Applied Analysis, Volume 2012 (2012), Article ID 357203, 13 pages. (SCIE).
[28] J. F. Xu, X. B. Zhang, The zeros of q-shift difference polynomials of meromorphic functions, Advances in Difference Equations, 2012,2012:200(SCIE).
[29] J. F. Xu, H.X. Yi and Z.L. Zhang, Some inequalities of differential polynomials II, Mathematical Inequalities & Applications, 14(2011), no.1, 93-100.(SCIE).
[30] X. B. Zhang, J. F. Xu(ͨѶ×÷Õß),, Uniqueness of meromorphic functions sharing a small function and its applications, Computers and Mathematics with Applications, 61 (2011) 722-730. (SCI£¬£¬£¬EI)
[31] X. B. Zhang, J. F. Xu, Normality criteria of Lahiri's type and their applications, Journal of Inequalities and applications, Volume 2011 (2011), Article ID 873184, 16 pages. (SCIE).
[32] T.B. Cao, J. F. Xu, Z.X. Chen, On the meromorphic solutions of linear differential equations on the complex plane, J. Math. Anal. Appl., 364 (2010) 130¨C142 (SCI)
[33] J. F. Xu, F. Lv and H.X. Yi, Fixed-points and uniqueness of meromorphic functions, Computers and Mathematics with Applications, 59 (2010) 9¨C17. (SCI£¬£¬£¬EI)
[34] J. F. Xu, W.S. Cao, Some normality criteria of meromorphic functions, Journal of Inequalities and applications, Volume 2010 (2010), Article ID 926302, 10 pages. (SCIE)
[35] J. F. Xu, H.X. Yi, The Relation Between Solution of the differential Equation With Functions of Small Growth, Acta Math Sinica, Chinese Serias, 2010,53(2), 291-296.
[36] J. F. Xu, H.X. Yi and Z.L. Zhang, Some inequalities of differential polynomials, Mathematical Inequalities & Applications, 12(2009), no.1, 99-113.(SCIE).
[37] W.J. Chen, J. F. Xu(ͨѶ×÷Õß),, Growth of meromorphic solutions of higher-order linear differential equations, EJQDE, (2009), no. 1, 1-13.(SCIE)
[38] J.F. Xu and H.X. Yi, Solutions of Higher Order Linear Differential Equations in an Angle, Applied Mathematics Letters, 22 (2009), 484-489.(SCI£¬£¬£¬EI).
[39] F. Lv, J.F. Xu and H.X. Yi, Uniqueness theorem and normal family of entire functions and their derivatives, Ann. Polon. Math. 95 (2009), 67-75.(SCIE).
[40] F. Lv, J. F. Xu, A. Chen, Uniquess theorems for entire functions and their first derivative, Arch Math. 2009, no.6, 593-601.£¨SCI£©£¨SCI¼ìË÷ºÅ£º£º460TX£©0003-889X
[41] J.F. Xu and H.X. Yi, Growth and fixed points of meromorphic solutions of higher-order linear differential equations, Journal. Korean Math. Soc. 2009, 46(4), 747¨C758£¨SCIE).
[42] F. Lv, H.X.Yi and J. F. Xu, Some further results on weighted sharing three values and Brosch's theorem, Computers and Mathematics with Applications, (1)58( 2009), 11-24. (SCI£¬£¬£¬EI)
[43] J.F. Xu, Q. Han and J.L. Zhang, Uniquesness of entire function of a certain form, Bull. Korean.Math. Soc., 46 (2009), No. 6, pp. 1079¨C1089. (SCIE)
[44] J.F. Xu and H.X. Yi, On uniqueness of meromorphic functions with shared four values in some angular domains, Bull. Malaysian Math. Sc. Soc. (2)31(2008)£¬£¬£¬57-65. (SCIE)
[45] F. Lv, J.F. Xu(ͨѶ×÷Õß),, Sharing set and normal families of entire functions and their derivatives, Houston Journal of Mathematics, 34(2008), no.4. 1213-1223. (SCIE).
[46] F. Lv, J.F. Xu and H.X. Yi, Entire functions that share one value with their linear differential polynomials, J. Math. Anal. Appl., 342(2008), 615--628.(SCI)
[47] J.F. Xu and H.X. Yi, Uniqueness of entire functions and differential polynomials, Bull. Korean Math. Soc. 44(2007), no. 4. 623--629.(SCIE)
¡¾Ñ§ÊõЧ¹û¡¿
ÔÚ¡¶Appl.Math.Letter¡·¡¶Houston. J.Math¡·¡¶J. Math. Anal. Appl¡·¡¶Jour. Korean. Math. Soc¡·¡¶Arch. Math¡·¡¶Computers & Math. Appl¡·¡¶Êýѧѧ±¨¡·¡¶ÊýѧϣÍû¡·µÈº£ÄÚÍâÖøÃûѧÊõ¿¯Îï½ÒÏþ¼°ÈÎÃü60¶àƪѧÊõÂÛÎÄ£¨ÆäÖÐÓÐ40¶àƪÂÛÎı»SCIÊÕ¼)¡£¡£